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1. Itô’s SPDE

Itô was interested in the following problem [2] (Math. Z. ’83): Let
{Bk(t)}∞k=1 be independent 1D Brownian motions with common
initial distribution µ. Set

un(t, dx) :=
1√
n

( n∑
k=1

δBk (t)(dx)− E

[ n∑
k=1

δBk (t)(dx)

])
.

Then, un(t, ·) ⇒ u(t, ·)dx and u(t, ·) satisfies the SPDE:

∂tu =
1

2
∂2
xu + ∂x

(√
µ(t, x)Ẇ (t, x)

)
,

where Ẇ (t, x) = Ẇ (t, x , ω) is a space-time Gaussian white noise
with covariance structure formally given by

E [Ẇ (t, x)Ẇ (s, y)] = δ(t − s)δ(x − y), (1)

and µ(t, x) =
∫
R

1√
2πt

e−
(x−y)2

2t µ(dy).
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Proof is given as follows:

For every test function φ ∈ C∞
0 (R),

un(t, φ) =
1√
n

( n∑
k=1

φ(Bk(t))− E

[ n∑
k=1

φ(Bk(t))

])
.

Applying Itô’s formula, we have

dun(t, φ) =
1√
n

( n∑
k=1

∂xφ(Bk(t))dBk(t)+
1

2

n∑
k=1

∂2
xφ(Bk(t))dt−

1

2
E
[
· · ·

]
dt

)
.

drift term = 1
2un(t, ∂

2
xφ)dt

diffusion term 1√
n

∑n
k=1

∫ t

0
∂xφ(Bk(s))dBk(s) has a quadratic

variation: 1
n

∑n
k=1

∫ t

0
∂xφ(Bk(s))

2ds which converges as n → ∞ to∫ t

0
ds

∫
R ∂xφ(x)

2µ(s, x)dx by LLN.

The limit
∫ t

0

∫
R ∂xφ(x)

√
µ(s, x)Ẇ (s, x)dsdx has the same quad.var.

This result was extended by H. Spohn (CMP ’86) to the interacting case

under equilibrium: dXk(t) = − 1
2

∑
i ̸=k ∇V (Xk(t)− Xi (t))dt + dBk(t).
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2. TDGL equation

Time-dependent Ginzburg-Landau (TDGL) equation (cf.
Hohenberg-Halperin, Kawasaki-Ohta, Langevin equation)

∂tu = −1

2

δH

δu(x)
(u) + Ẇ (t, x), x ∈ Rd ,

Ẇ (t, x) : space-time Gaussian white noise

H(u) =

∫
Rd

{
1

2
|∇u(x)|2 + V (u(x))

}
dx .

Heuristically, Gibbs measure 1
Z
e−Hdu is invariant under

these dynamics, where du =
∏

x∈Rd du(x).

Tadahisa Funaki University of Tokyo

Some Topics in Stochastic Partial Differential Equations



• Since the functional derivative is given by

δH

δu(x)
= −∆u + V ′(u(x)),

TDGL eq has the form:

∂tu =
1

2
∆u − 1

2
V ′(u) + Ẇ (t, x). (2)

• The noise Ẇ (t, x) can be constructed as follows:

Take {ψk}∞k=1: CONS of L2(Rd , dx) and {Bk(t)}∞k=1:
independent 1D BMs, and consider a (formal) Fourier
series:

W (t, x) =
∞∑
k=1

Bk(t)ψk(x). (3)
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Stochastic PDEs used in physics are sometimes ill-posed.

For TDGL eq (2),

Noise is very irregular: Ẇ ∈ C− d+1
2

− := ∩δ>0C
− d+1

2
−δ a.s.

Linear case (without V ′(u)): u(t, x) ∈ C
2−d
4

−, 2−d
2

− a.s.

Well-posed only when d = 1.
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Martin Hairer:

Theory of regularity structures, systematic renormalization

TDGL equation with V (u) = 1
4
u4:

=Stochastic quantization (Dynamic P(ϕ)d -model):

∂tϕ = ∆ϕ− ϕ3 + Ẇ (t, x), x ∈ Rd

For d = 2 or 3, replace Ẇ by a smeared noise Ẇ ε and
introduce a renormalization factor −Cεϕ. Then, the limit
of ϕ = ϕε as ε ↓ 0 exists (locally in time).

The solution is continuous in Ẇ ε and their (finitely
many) polynomials.

Another approaches

Gubinelli and others:
Paracontrolled distributions (harmonic analytic method)

Kupiainen
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When Ẇ = 0 (noise is not added) and V= double-well
type, TDGL eq (2) is known as Allen-Cahn equation or
reaction-diffusion equation of bistable type.

Dynamic phase transition, Sharp interface limit as ε ↓ 0
for TDGL equation (=stochastic Allen-Cahn equation):

∂tu = ∆u +
1

ε
f (u) + Ẇ (t, x), x ∈ Rd (4)

f = −V ′, Potential V is of double-well type:

e.g., f = u − u3 if V = 1
4
u4 − 1

2
u2

−1 +1
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The limit is expected to satisfy:

u(t, x) −→
ε↓0

{
+1

−1

+1

−1

Γt

A random phase separating hyperplane Γt appears and its
time evolution is studied under proper time scaling.
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3. Kardar-Parisi-Zhang equation

The KPZ (Kardar-Parisi-Zhang, 1986) equation describes
the motion of growing interface with random fluctuation.

It has the form for height function h(t, x):

∂th = 1
2
∂2xh +

1
2
(∂xh)

2 + Ẇ (t, x), x ∈ R. (5)
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Ill-posedness of KPZ eq (5):

The nonlinearity and roughness of the noise do not match.

The linear SPDE:

∂th = 1
2
∂2xh + Ẇ (t, x),

obtained by dropping the nonlinear term has a solution
h ∈ C

1
4
−, 1

2
−([0,∞)× R) a.s. Therefore, no way to define

the nonlinear term (∂xh)
2 in (5) in a usual sense.

Actually, the following Renormalized KPZ eq with
compensator δx(x) (= +∞) has the meaning:

∂th = 1
2∂

2
xh + 1

2{(∂xh)
2 − δx(x)}+ Ẇ (t, x),

as we will see later.
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1
3
-power law: Under stationary situation,

Var(h(t, 0)) = O(t
2
3 )

as t → ∞, i. e. the fluctuations of h(t, 0) are of order t
1
3 .

Subdiffusive behavior different from CLT (=diffusive
behavior).

(Sasamoto-Spohn) The limit distribution of h(t, 0) under
scaling is given by the so-called Tracy-Widom distribution
(different depending on initial distributions).
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Cole-Hopf solution to the KPZ equation

Consider the linear stochastic heat equation (SHE) for
Z = Z (t, x):

∂tZ = 1
2
∂2xZ + ZẆ (t, x), (6)

with a multiplicative noise. This eq is well-posed (if we
understand the multiplicative term in Itô’s sense but
ill-posed in Stratonovich’s sense).

If Z (0, ·) > 0 ⇒ Z (t, ·) > 0.

Therefore, we can define the Cole-Hopf transformation:

h(t, x) := log Z (t, x). (7)

This is called Cole-Hopf solution of KPZ equation.
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Heuristic derivation of the KPZ eq (with renormalization factor
δx(x)) from SHE (6) under the Cole-Hopf transformation (7):

Apply Itô’s formula for h = log z :

∂th = Z−1∂tZ − 1
2
Z−2(∂tZ )

2

= Z−1
(

1
2
∂2xZ + ZẆ

)
− 1

2
δx(x)

by SHE (6) and (dZ (t, x))2 = (ZdW (t, x))2

dW (t, x)dW (t, y) = δ(x − y)dt

= 1
2
{∂2xh + (∂xh)

2}+ Ẇ − 1
2
δx(x)
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This leads to the Renormalized KPZ eq:

∂th = 1
2
∂2xh +

1
2
{(∂xh)2 − δx(x)}+ Ẇ (t, x). (8)

The Cole-Hopf solution h(t, x) defined by (7) is
meaningful, although the equation (5) does not make
sense.

Goal is to introduce approximations for (8).

Hairer (2013, 2014) gave a meaning to (8) without
bypassing SHE.
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KPZ approximating equation-1: Simple

Symmetric convolution kernel Let η ∈ C∞
0 (R) s.t.

η(x) ≥ 0, η(x) = η(−x) and
∫
R η(x)dx = 1 be given, and

set ηε(x) := 1
ε
η( x

ε
) for ε > 0.

Smeared noise The smeared noise is defined by

W ε(t, x) = ⟨W (t), ηε(x − ·)⟩
(
= W (t) ∗ ηε(x)

)
.

Approximating Eq-1:

∂th = 1
2
∂2xh +

1
2

(
(∂xh)

2 − ξε
)
+ Ẇ ε(t, x)

∂tZ = 1
2
∂2xZ + ZẆ ε(t, x),

where ξε = ηε2(0) (:= ηε ∗ ηε(0)).
It is easy to show that Z = Z ε converges to the sol Z of
(SHE), and therefore h = hε converges to the Cole-Hopf
solution of the KPZ eq.
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KPZ approximating equation-2 (jointly with Quastel):

We want to introduce another approximation which is
suitable to study the invariant measures.

General principle. Consider the SPDE

∂th = F (h) + Ẇ ,

and let A be a certain operator. Then, the structure of
the invariant measures essentially does not change for

∂th = A2F (h) + AẆ .

This leads to

∂th = 1
2
∂2xh +

1
2

(
(∂xh)

2 − ξε
)
∗ ηε2 + Ẇ ε(t, x), (9)

where η2(x) = η ∗ η(x), ηε2(x) = η2(x/ε)/ε and
ξε = ηε2(0).
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Cole-Hopf transform for SPDE (9)

The goal is to pass to the limit ε ↓ 0 in the KPZ
approximating equation (9):

∂th = 1
2∂

2
xh + 1

2

(
(∂xh)

2 − ξε
)
∗ ηε2 + Ẇ ε(t, x).

We consider its Cole-Hopf transform: Z (≡ Z ε) := eh.
Then, by Itô’s formula, Z satisfies the SPDE:

∂tZ = 1
2∂

2
xZ + Aε(x ,Z ) + ZẆ ε(t, x), (10)

where

Aε(x ,Z ) =
1

2
Z (x)

{(
∂xZ

Z

)2

∗ ηε2(x)−
(
∂xZ

Z

)2

(x)

}
.

The complex term Aε(x ,Z ) looks vanishing as ε ↓ 0.
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But this is not true. Indeed, under the average in time t,
Aε(x ,Z ) can be replaced by a linear function 1

24
Z .

The limit as ε ↓ 0 (under stationarity of tilt),

∂tZ = 1
2
∂2xZ+

1
24
Z + ZẆ (t, x).

Or, heuristically at KPZ level,

∂th = 1
2
∂2xh +

1
2
{(∂xh)2 − δx(x)}+ 1

24
+ Ẇ (t, x).
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Multi-component KPZ equation can be also discussed:

Ferrari-Sasamoto-Spohn (2013) studied Rd -valued KPZ
equation for h(t, x) = (hα(t, x))dα=1 on R:

∂th
α = 1

2
∂2xh

α+ 1
2
Γαβγ∂xh

β∂xh
γ + Ẇ α(t, x), x ∈ R, (11)

where Ẇ (t, x) = (Ẇ α(t, x))dα=1 is an Rd -valued
space-time Gaussian white noise. The constants
(Γαβγ)1≤α,β,γ≤d satisfy the condition:

Γαβγ = Γαγβ = Γγβα. (12)

Similar SPDE appears to discuss motion of loops on a
manifold, cf. Funaki (1992).
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Summary of talk

1 Itô’s SPDE

2 TDGL equation
(Dynamic P(ϕ)-model, Stochastic Allen-Cahn equation)

3 KPZ equation
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Thank you for your attention!
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